608 research outputs found

    Stellar winds, dead zones, and coronal mass ejections

    Get PDF
    Axisymmetric stellar wind solutions are presented, obtained by numerically solving the ideal magnetohydrodynamic (MHD) equations. Stationary solutions are critically analysed using the knowledge of the flux functions. These flux functions enter in the general variational principle governing all axisymmetric stationary ideal MHD equilibria. The magnetized wind solutions for (differentially) rotating stars contain both a `wind' and a `dead' zone. We illustrate the influence of the magnetic field topology on the wind acceleration pattern, by varying the coronal field strength and the extent of the dead zone. This is evident from the resulting variations in the location and appearance of the critical curves where the wind speed equals the slow, Alfven, and fast speed. Larger dead zones cause effective, fairly isotropic acceleration to super-Alfvenic velocities as the polar, open field lines are forced to fan out rapidly with radial distance. A higher field strength moves the Alfven transition outwards. In the ecliptic, the wind outflow is clearly modulated by the extent of the dead zone. The combined effect of a fast stellar rotation and an equatorial `dead' zone in a bipolar field configuration can lead to efficient thermo-centrifugal equatorial winds. Such winds show both a strong poleward collimation and some equatorward streamline bending due to significant toroidal field pressure at mid-latitudes. We discuss how coronal mass ejections are then simulated on top of the transonic outflows.Comment: scheduled for Astrophys. J. 530 #2, Febr.20 2000 issue. 9 figures (as 6 jpeg and 8 eps files

    Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets: three-dimensional effects

    Get PDF
    A numerical study of the Kelvin-Helmholtz instability in compressible magnetohydrodynamics is presented. The three-dimensional simulations consider shear flow in a cylindrical jet configuration, embedded in a uniform magnetic field directed along the jet axis. The growth of linear perturbations at specified poloidal and axial mode numbers demonstrate intricate non-linear coupling effects. The physical mechanims leading to induced secondary Kelvin-Helmholtz instabilities at higher mode numbers are identified. The initially weak magnetic field becomes locally dominant in the non-linear dynamics before and during saturation. Thereby, it controls the jet deformation and eventual breakup. The results are obtained using the Versatile Advection Code [G. Toth, Astrophys. Lett. Comm. 34, 245 (1996)], a software package designed to solve general systems of conservation laws. An independent calculation of the same Kelvin-Helmholtz unstable jet configuration using a three-dimensional pseudo-spectral code gives important insights into the coupling and excitation events of the various linear mode numbers.Comment: 10 (+7) pages, 6 figures, accepted for Phys. Plasmas 6, to appear 199

    Numerical simulations of stellar winds: polytropic models

    Get PDF
    We discuss steady-state transonic outflows obtained by direct numerical solution of the hydrodynamic and magnetohydrodynamic equations. We make use of the Versatile Advection Code, a software package for solving systems of (hyperbolic) partial differential equations. We proceed stepwise from a spherically symmetric, isothermal, unmagnetized, non-rotating Parker wind to arrive at axisymmetric, polytropic, magnetized, rotating models. These represent 2D generalisations of the analytical 1D Weber-Davis wind solution, which we obtain in the process. Axisymmetric wind solutions containing both a `wind' and a `dead' zone are presented. Since we are solving for steady-state solutions, we efficiently exploit fully implicit time stepping. The method allows us to model thermally and/or magneto-centrifugally driven stellar outflows. We particularly emphasize the boundary conditions imposed at the stellar surface. For these axisymmetric, steady-state solutions, we can use the knowledge of the flux functions to verify the physical correctness of the numerical solutions.Comment: 11 pages, 6 figures, accepted for Astron. Astrophys. 342, to appear 199

    Non-resonant magnetohydrodynamics streaming instability near magnetized relativistic shocks

    Full text link
    We present in this paper both a linear study and numerical relativistic MHD simulations of the non-resonant streaming instability occurring in the precursor of relativistic shocks. In the shock front restframe, we perform a linear analysis of this instability in a likely configuration for ultra-relativistic shock precursors. This considers magneto-acoustic waves having a wave vector perpendicular to the shock front and the large scale magnetic field. Our linear analysis is achieved without any assumption on the shock velocity and is thus valid for all velocity regimes. In order to check our calculation, we also perform relativistic MHD simulations describing the propagation of the aforementioned magneto-acoustic waves through the shock precursor. The numerical calculations confirm our linear analysis, which predicts that the growth rate of the instability is maximal for ultra-relativistic shocks and exhibits a wavenumber dependence kx1/2\propto k_x^{1/2}. Our numerical simulations also depict the saturation regime of the instability where we show that the magnetic amplification is moderate but nevertheless significant (δB/B10\delta B/B\leq 10). This latter fact may explain the presence of strong turbulence in the vicinity of relativistic magnetized shocks. Our numerical approach also introduces a convenient means to handle isothermal (ultra-)relativistic MHD conditions.Comment: 14 pages, 6 figures, MNRAS (in press

    Modelling ripples in Orion with coupled dust dynamics and radiative transfer

    Get PDF
    In light of the recent detection of direct evidence for the formation of Kelvin-Helmholtz instabilities in the Orion nebula, we expand upon previous modelling efforts by numerically simulating the shear-flow driven gas and dust dynamics in locations where the HII_{II} region and the molecular cloud interact. We aim to directly confront the simulation results with the infrared observations. Methods: To numerically model the onset and full nonlinear development of the Kelvin-Helmholtz instability we take the setup proposed to interpret the observations, and adjust it to a full 3D hydrodynamical simulation that includes the dynamics of gas as well as dust. A dust grain distribution with sizes between 5-250 nm is used, exploiting the gas+dust module of the MPI-AMRVAC code, in which the dust species are represented by several pressureless dust fluids. The evolution of the model is followed well into the nonlinear phase. The output of these simulations is then used as input for the SKIRT dust radiative transfer code to obtain infrared images at several stages of the evolution, which can be compared to the observations. Results: We confirm that a 3D Kelvin-Helmholtz instability is able to develop in the proposed setup, and that the formation of the instability is not inhibited by the addition of dust. Kelvin-Helmholtz billows form at the end of the linear phase, and synthetic observations of the billows show striking similarities to the infrared observations. It is pointed out that the high density dust regions preferentially collect on the flanks of the billows. To get agreement with the observed Kelvin-Helmholtz ripples, the assumed geometry between the background radiation, the billows and the observer is seen to be of critical importance.Comment: 8 pages, 10 figure

    AMRVAC and Relativistic Hydrodynamic simulations for GRB afterglow phases

    Get PDF
    We apply a novel adaptive mesh refinement code, AMRVAC, to numerically investigate the various evolutionary phases in the interaction of a relativistic shell with its surrounding cold Interstellar Medium (ISM). We do this for both 1D isotropic as well as full 2D jetlike fireball models. This is relevant for Gamma Ray Bursts, and we demonstrate that, thanks to the AMR strategy, we resolve the internal structure of the shocked shell-ISM matter, which will leave its imprint on the GRB afterglow. We determine the deceleration from an initial Lorentz factor γ=100\gamma=100 up to the almost Newtonian γO(2)\gamma\sim{\cal O}(2) phase of the flow. We present axisymmetric 2D shell evolutions, with the 2D extent characterized by their initial opening angle. In such jetlike GRB models, we discuss the differences with the 1D isotropic GRB equivalents. These are mainly due to thermally induced sideways expansions of both the shocked shell and shocked ISM regions. We found that the propagating 2D ultrarelativistic shell does not accrete all the surrounding medium located within its initial opening angle. Part of this ISM matter gets pushed away laterally and forms a wide bow-shock configuration with swirling flow patterns trailing the thin shell. The resulting shell deceleration is quite different from that found in isotropic GRB models. As long as the lateral shell expansion is merely due to ballistic spreading of the shell, isotropic and 2D models agree perfectly. As thermally induced expansions eventually lead to significantly higher lateral speeds, the 2D shell interacts with comparably more ISM matter and decelerates earlier than its isotropic counterpart.Comment: 12 pages, accepted in MNRAS, 12/01/200

    Formation and long-term evolution of 3D vortices in protoplanetary discs

    Full text link
    In the context of planet formation, anticyclonic vortices have recently received lots of attention for the role they can play in planetesimals formation. Radial migration of intermediate size solids toward the central star may prevent their growth to larger solid grains. On the other hand, vortices can trap the dust and accelerate this growth, counteracting fast radial transport. Multiple effects have been shown to affect this scenario, such as vortex migration or decay. The aim of this paper is to study the formation of vortices by the Rossby wave instability and their long term evolution in a full three dimensional protoplanetary disc. We use a robust numerical scheme combined with adaptive mesh refinement in cylindrical coordinates, allowing to affordably compute long term 3D evolutions. We consider a full disc stratified both radially and vertically that is prone to formation of vortices by the Rossby wave instability. We show that the 3D Rossby vortices grow and survive over hundreds of years without migration. The localized overdensity which initiated the instability and vortex formation survives the growth of the Rossby wave instability for very long times. When the vortices are no longer sustained by the Rossby wave instability, their shape changes toward more elliptical vortices. This allows them to survive shear-driven destruction, but they may be prone to elliptical instability and slow decay. When the conditions for growing Rossby wave-related instabilities are maintained in the disc, large-scale vortices can survive over very long timescales and may be able to concentrate solids.Comment: Accepted for publication in A&
    corecore